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Abstract

Adversarial patch attacks present a significant threat to
real-world object detectors due to their practical feasibil-
ity. Existing defense methods, which rely on attack data
or prior knowledge, struggle to effectively address a wide
range of adversarial patches. In this paper, we show two
inherent characteristics of adversarial patches, semantic in-
dependence and spatial heterogeneity, independent of their
appearance, shape, size, quantity, and location. Seman-
tic independence indicates that adversarial patches oper-
ate autonomously within their semantic context, while spa-
tial heterogeneity manifests as distinct image quality of the
patch area that differs from original clean image due to the
independent generation process. Based on these observa-
tions, we propose PAD, a novel adversarial patch localiza-
tion and removal method that does not require prior knowl-
edge or additional training. PAD offers patch-agnostic de-
fense against various adversarial patches, compatible with
any pre-trained object detectors. Our comprehensive digital
and physical experiments involving diverse patch types, such
as localized noise, printable, and naturalistic patches, ex-
hibit notable improvements over state-of-the-art works. Our
code is available at https://github.com/Lihua-Jing/PAD.

1. Introduction
Adversarial attacks substantially challenge the security of

object detectors, leading to potentially severe consequences
in various fields (e.g., autonomous driving). Traditional ad-
versarial attacks typically involve adding perturbations to
the entire image. However, modifying every pixel is unre-
alistic in real-world attack scenarios. Adversarial patch at-
tacks, on the other hand, focus on introducing disturbances
in a limited area. Their practical feasibility makes them one
of the most threatening forms of adversarial attacks.

Defenses against adversarial patch attacks on object de-
tectors can be broadly categorized into three main types: i)
modifying or intervening within detection models [21, 23,
39], ii) locating and eliminating adversarial patch regions
in images[7, 10, 28, 33, 42], and iii) certifiably robust de-
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Figure 1. When attacked by natural-looking adversarial patches,
(a) locates high-frequency areas, and eliminates edge lines instead
of patches [33]; (b) fails to detect the existence of patches since no
such patch data in the training set [28]; (c) produces a heat map
where the patch area and background are difficult to distinguish,
failing to locate the patches [42]. Our proposed PAD achieves ac-
curate patch location and removal.

fenses [46, 50]. Among these, methods falling under the sec-
ond category, which act as preprocessing, offer the broadest
range of applications.

Researchers have explored various patch localization
methods to effectively remove adversarial patches from im-
ages. Denoising-based defenses [33] smooth out noise-like
regions in images, providing an effective defense against
early localized noise patches. However, they fail to address
natural-looking patches. External segmenter-based defenses
[10, 28] train an adversarial patch segmentation model for
patch localization, using adversarial images generated by
existing attack techniques. However, the reliance on train-
ing data makes them ineffective against unseen patch types.
Entropy-based defenses [7, 42] achieve patch localization
by identifying high entropy kernels and patch shape recon-
struction. Nevertheless, the entropy threshold setting re-
quires prior knowledge of the distribution for clean data and
patches, and shape reconstruction relies on training data,
posing challenges in practical applications. Despite progress
in certain aspects, these methods face a common challenge
of locating various adversarial patches without relying on
prior attack knowledge. As shown in Figure 1, these three
categories of methods fail to effectively remove patch areas.

In this paper, we propose a new approach for various ad-
versarial patch localization without relying on prior attack



knowledge (e.g., appearance, shape, size, or quantity). The
proposed approach is derived from two inherent characteris-
tics of adversarial patches: semantic independence and spa-
tial heterogeneity.

Semantic independence implies zero information gain
from the surrounding semantic space, while spatial hetero-
geneity refers to inconsistent image quality in the same
space introduced by adversarial patches. In both digital and
physical attacks, the adversarial patch, added as a separate
component to the image or environment, is semantically in-
dependent in the image. The surroundings provide no in-
formation about the content of adversarial patches, and vice
versa. Additionally, different imaging devices, generation
processes, and compression methods may lead to variations
in image quality. With a source different from the original
clean data, the quality of patch regions exhibits heterogene-
ity compared to other areas in space.

Based on these observations, we propose to identify
patch areas by quantifying local semantic independence and
spatial heterogeneity. We measure the information gain be-
tween adjacent regions based on mutual information, and
evaluate residuals from recompression at different quality
factors to address the unequal impact upon areas of vary-
ing quality. While complex backgrounds confuse entropy-
based methods [7, 42] since the high information density
caused by complicated textures, our method exhibits more
robustness as semantic correlations remain between adjacent
background areas. In addition, to eliminate the reliance on
training data, we present a patch localization and removal
pipeline that requires no prior knowledge or additional train-
ing. Different from current works, our defense accurately
identifies the patch region mask without any reference to ex-
isting adversarial images and imposes no limitations on the
quantity or proportion of patches in the image.

Our contributions can be summarized as follows:

• We reveal two inherent characteristics of adversarial
patches, semantic independence and spatial heterogeneity,
and propose patch locating based on mutual information
and recompression, which is agnostic to patch appearance,
shape, size, location, and quantity.

• We propose a patch-agnostic defense (PAD) method for
adversarial patch localization and removal, which requires
no prior attack knowledge or additional training and is
compatible with any object detector.

• We conduct experiments on adversarial patches with dif-
ferent appearances, shapes, sizes, locations, and quanti-
ties, evaluating the defense effectiveness of PAD in both
digital and physical scenes. Experimental results demon-
strate our superior defense performance compared to the
current state-of-the-art methods.

2. Related Work

2.1. Adversarial Patch Attacks

The concept of adversarial patch attacks is first intro-
duced by [6]. They develop a generic patch capable of de-

ceiving image classifiers and demonstrate the feasibility of
physical attacks by attaching the patch in real-world scenar-
ios. Early research on adversarial patch attacks primarily
focuses on localized noise [22, 29]. DPatch [29] is the pio-
neering work on patch attacks specifically designed for ob-
ject detection, targeting both bounding box regression and
object classification components of the detection system.
PatchAttack [53] proposes a reinforcement learning-based
attack method to induce misclassification by superimposing
small texture patches on the input image. Some work focus
on physical attacks [8, 43, 45, 51, 56]. [56] and [8] attach
patches to traffic signs, leading to the misidentification of
those signs. [43] proposes a printable adversarial patch for
pedestrian detection, introducing non-printable loss in the
optimization process. [51] and [45] explore the integration
of adversarial patches into wearable clothing. [17], [25] and
[41] train generative adversarial networks (GANs) to gener-
ate natural-looking patches that match the visual properties
of normal images.

2.2. Defenses against Patch Attacks

Adversarial training [13, 20, 32, 34, 40, 44, 55], which
enhances model robustness by adding adversarial examples
during training, is one of the most popular and effective de-
fenses against digital attacks. However, such methods are
not suitable for defending pre-trained models already in use
and require significant resources for retraining when new at-
tacks emerge, making them not so practical.

Some defense methods involve modification of specific
models [21, 23, 39, 54]. [39] investigates the use of spatial
context constraints in YOLOv2 [35] to enhance defense ro-
bustness against adversarial patches. [21] introduces a patch
class into YOLOv2, enabling the detection of objects of in-
terest as well as adversarial patches. [23] proposes adver-
sarial patch feature energy(APE), and defense is achieved
by incorporating an APE discovery and suppression mod-
ule into the network. Although good defense effects can be
achieved on specific detection models, they cannot directly
provide defense for a wide range of object detectors.

To provide more general defense, researchers have ex-
plored locating patch areas in images and eliminating their
effects [7, 9, 10, 14, 28, 33, 38, 42, 52]. Since early adversar-
ial patches are usually in the form of localized noise, some
defense methods focus on reducing the impact of noise-like
areas in input images. LGS [33] observes that patch at-
tacks introduce concentrated high-frequency noise and pro-
poses gradient smoothing for regions with significant gradi-
ents. APM [10] and SAC [28] train external segmentation
networks to locate noise-like regions. While these meth-
ods effectively defend against localized noise-based patch
attacks, they struggle to counter the new types of natural-
looking patches. DW [14] and Jujutsu [9] utilize saliency
maps to identify patch areas and cover them to mitigate their
impact on classification. In object detection tasks, which
involve bounding box regression in addition to classifica-
tion, accurately localizing patches becomes challenging us-
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Figure 2. Overview of our proposed PAD. Semantic Independence Localization and Spatial Heterogeneity Localization find patch regions

from two views, generating heat maps feeding into Fusion Block. The patch localization map output by Fusion Block is then matched with

all masks from SAM, getting more accurate patch boundaries. Feeding the defended image into object detectors for robust prediction.

ing saliency maps. Jedi [42] and [7] use entropy to locate

patch areas, but prior knowledge of entropy distribution of

clean dataset and patch area is required.

In recent years, some researchers have proposed certi-

fiably robust defenses against adversarial patches [46–50].

DetectorGuard [46] is an attack detection defense that raises

an alert when an attack is detected without removing the ad-

versarial patches, resulting in a loss of model functionality

during an attack. ObjectSeeker [50] requires ensuring that,

under at least one partition, the remaining images do not

contain any adversarial patch pixels. As a result, there will

be trouble handling attack scenarios with large patch pro-

portions or multiple patches.

Different from these methods, PAD is derived from two

general characteristics of patches that are independent of

their appearance, shape, size, quantity, and location, allow-

ing us to eliminate various patches without relying on prior

attack knowledge.

3. Preliminaries

Differing from traditional adversarial attacks, adversar-

ial patch attacks impose restrictions on the attacker, limiting

the area where perturbations can be introduced. Within this

constraint, the attacker has the flexibility to manipulate the

pixels within the designated patch region.

We denote a clean image with dimensions w × h × c as

X ∈ R
w×h×c. The adversarial patch, denoted as Padv , can

take any shape. The generation of Padv is typically con-

trolled by the loss function Lpatch, which varies depending

on the specific attack objective. Since our goal is to defend

against various patch attacks, irrespective of their intention

to conceal the target object, misclassify it, or generate false

detections of non-existent objects, we do not make assump-

tions about Lpatch.

The resulting adversarial image Xadv ∈ R
w×h×c, pro-

duced by attack techniques, can be expressed as follows:

Xadv = Mpatch�A(Padv, X, l, t)+(1−Mpatch)�X, (1)

where Mpatch ∈ {0, 1}w×h
represents the patch region in

image X , with elements set to 1 within Padv and 0 else-

where. A(Padv, X, l, t) denotes the patch application func-

tion, incorporating patch transformations such as scaling

and rotation denoted by t, and patch location denoted by

l. � refers to element-wise multiplication. In the case of

attack methods that can be used physically, A(Padv, X, l, t)
typically involves completely replacing the image area at po-

sition l with the transformed patch.

4. Method
4.1. Defense Pipeline

In this section, we introduce the pipeline of PAD, as

shown in Figure 2. Firstly, we analyze the input image using

the two inherent characteristics that all adversarial patches

possess to obtain heat maps, Hmi and Hcd, which highlight

the regions in the image that exhibit semantic independence

and spatial heterogeneity, respectively. Next, we employ the

Fusion block to merge Hmi and Hcd, generating the patch

localization map Hp that accurately reflects the areas in the

image that possess both of these characteristics.

To make the patch masks more accurate, we introduce the

Segment Anything Model (SAM) [24]. Different from the

segmentation models introduced in prior methods, since we

do not need it to have recognition capabilities for adversarial

patches, SAM can be replaced with any pre-trained segmen-

tation models with similar capabilities, without additional

training. In other words, we do not rely on known patch

attack methods to generate adversarial images for training,

preventing our defense from losing effectiveness when en-

countering new attack methods. With SAM’s zero-shot seg-

mentation capability, we segment the edges of all regions in



the image and obtain masks for each region. We then match
each mask with Hp and consider all masks with Intersection
over Area (IoA) greater than threshold tm as the final patch
masks. The calculation of IoA can be stated as follows:

IoA(mask,Hp) =
area(mask

⋂
Hp)

area(mask)
. (2)

If the localization of adversarial patches is accurate
enough, the removal process only needs to be able to elim-
inate the impact of the patches. Therefore, we employ a
simple and fast inpainting method that is commonly used in
previous works [10, 28]: filling the patch area with all black
pixels. We also compare the coherence transport-based in-
painting method [4, 42] with all-black, more details can be
found in supplementary material.

4.2. Semantic Independence Localization

Semantic independence evaluation. The semantic inde-
pendence of a region can be measured by its semantic cor-
relation with surrounding regions. The smaller the semantic
correlation, the stronger the independence. For two adjacent
regions, A and B, their semantic correlation can be defined
as the information gain they provide to each other. Given
knowledge about region A, it quantifies how much infor-
mation can be inferred about region B, i.e., the reduction
in uncertainty about B given knowledge of A. This can be
expressed using mutual information:

I(A;B) = H(A)−H(A|B) = H(B)−H(B|A) (3)

where H(∗) represents information entropy, and H(∗|∗)
represents conditional entropy.
Semantic independence localization based on mutual in-
formation. Building on the analysis above, we perform
adversarial patch discovery by computing the semantic in-
dependence of local regions across the entire image. We
set up a sliding window, and calculate the mutual informa-
tion between each window and its four neighboring win-
dows (up, down, left, right). The average value of these
mutual information scores is used as the heat value for
the current window, generating a heat map for the entire
image. We use Wcur to denote the current window, and
Wup, Wdown, Wleft, Wright represent the four neighbor-
ing windows of the same size respectively. For each i in
{up, down, left, right}, the mutual information between
Wi and Wcur can be expressed as follows:

I(Wi;Wcur) =
∑

wi∈Wi

∑
wc∈Wcur

p(wi, wc) log
p(wi, wc)

p(wi)p(wc)
.

(4)
The heat value within Wcur can be expressed as follows:

Hmi [xcur : xcur + d, ycur : ycur + d] =
1

n

n∑
i=1

I(Wi;Wcur),

(5)

where(xcur, ycur) denotes the coordinates of the upper left
corner of the window Wcur, Hmi denotes the heat map gen-
erated by Semantic Independence Localization module, d
denotes the size of the sliding window, and n denotes the
number of neighboring windows. n equals 4 for most win-
dows, 2 or 3 for windows located at the edge of the image.

4.3. Spatial Heterogeneity Localization

Impact of compression on image quality. Image compres-
sion leverages the insensitivity to certain components of hu-
man eyes to reduce storage space. Taking the most com-
monly used JPEG compression as an example, after color
space transformation, it undergoes block-based Discrete Co-
sine Transform (DCT) to the image, converting the spatial
domain into the frequency domain. The transformed low-
frequency components have larger values, mainly concen-
trated in the upper-left corner, while high-frequency com-
ponents have smaller values, distributed in lower-right re-
gions. Subsequently, the DCT coefficients are quantized so
that smaller coefficients close to 0 completely become 0, and
non-zero values also generate a large number of repetitions,
thereby reducing the coding length. Using F (x, y, i) to rep-
resent the DCT coefficient of channel i at location (x, y), the
quantization process can be expressed as:

Fq(x, y, i) = round(
F (x, y, i)

Q(x, y, i)
), (6)

where Q(x, y, i) represents the corresponding quantization
step size. A larger Q leads to greater quantization loss and
poorer image quality.
Spatial heterogeneity localization through recompres-
sion. For an image containing regions of varying quality,
compressing the entire image will affect each quality region
differently, providing valuable clues for identifying abnor-
mal regions in the image [3, 12, 15, 26, 30]. Inspired by this,
we locate adversarial patches based on the quality differ-
ences during recompression. For a clean image with quality
factor Qc, the patch area with quality factor Qp, we set dif-
ferent quality factors Qr to re-compress the attacked image
Xadv , and calculate the squared difference of pixel values
before and after re-compression, as follows:

D(x, y,Qr) =
1

c

c∑
i=1

[f(x, y, i)− fQr
(x, y, i)]

2
, (7)

where c denotes the number of channels. When Qr is close
to Qp, the D values of the patch region are minimized.
When Qr is close to Qc, the D values of the uncovered re-
gion are minimized. To enhance the robustness to texture
variations in the image, we apply convolutional smoothing
and perform normalization.

4.4. Fusion Block

Section 4.2 and 4.3 aim to identify potential adversar-
ial patch regions from the perspectives of semantic inde-
pendence and spatial heterogeneity. In the fusion block,



we merge the heat maps obtained from these two methods.
Additionally, to mitigate the influence of cluttered back-
grounds, we apply adaptive thresholding and morphological
operations to further process the fused results.
Heatmap fusion. Given the local mutual information heat
map Hmi and the recompression difference heat map Hcd

which have different value ranges, we first normalize them
individually to scale the values into the range [0, 255]. The
normalization process can be expressed as follows:

H
′

mi(x, y) =
Hmi(x, y)−min(Hmi)

max(Hmi)−min(Hmi)
× 255, (8)

H
′

cd(x, y) =
Hcd(x, y)−min(Hcd)

max(Hcd)−min(Hcd)
× 255. (9)

After normalization, we perform a weighted sum of H
′

mi

and H
′

cd to obtain the fused heat map, H
′

fuse:

Hfuse(x, y) = rmi ×H
′

mi(x, y) + (1− rmi)×H
′

cd(x, y),
(10)

where rmi ∈ [0, 1] denotes the weight of mutual information
heat map.
Adaptive thresholding. Since the heat values are signifi-
cantly affected by the image content, using a static threshold
may filter out adversarial patches or incorrectly treat other
regions as adversarial patches, thus degrading the perfor-
mance of the model. Therefore, we automatically set an
adaptive threshold based on the distribution of the heat map
for each image, and then set elements in Hfuse that are be-
low the threshold to 0. The threshold here can be expressed
as follows:

thresh = (1−j)×Sort(Hfuse)[i]+j×Sort(Hfuse)[i+1],
(11)

i = ⌊(n− 1)× p⌋ , j = (n− 1)× p− i, (12)

where p is a fixed hyperparameter, n represents the number
of elements in Hfuse, and Sort(Hfuse) represents sorted
Hfuse in ascending order based on the heat values.
Morphological operations. To eliminate the interference
of background with high heat values but unrelated to adver-
sarial patches, we apply an OPEN-CLOSE-OPEN operation
to the heat map after thresholding. The opening operation
involves erosion followed by dilation and is mainly used to
remove isolated small dots and bridges between different re-
gions in the heat map. The closing operation involves dila-
tion followed by erosion and is mainly used to fill in a few
concave regions in the patch area that were filtered out by
the threshold. The kernel size for the opening and closing
operations is adaptively selected based on the image size,
more details can be found in the supplementary material.

5. Defense Evaluation on Digital Attacks
5.1. Evaluation Settings

Target object detectors and dataset. In our experiments,
we use Faster R-CNN [37] with a ResNet-50 [16] backbone,

YOLOv2 [35], YOLOv3 [36], YOLOv5s [1] and YOLOv8n
[2] as our target object detectors. All models are pre-trained
on MS COCO [27]. Since most existing adversarial patch
attacks that can be used physically are developed for pedes-
trian detectors [23], we mainly focus on the INRIA Per-
son dataset [11] which consists of 614 person detection im-
ages for training and 288 for testing. Only test images are
adopted since there is no training part in PAD. Experiments
on other datasets can be found in supplementary material.
Adversarial patch attacks. To evaluate the defense effec-
tiveness of PAD against different types of patches, we em-
ploy 11 distinct patches generated by DPatch [29], YOLO
adversarial patch [43], and Naturalistic Patch [17], cover-
ing localized noise, printable, and natural-looking patches.
DPatch generates a specific-sized patch (75× 75 and 100×
100 in our experiments) located in the upper left corner of
each image, using 200 iterations with a learning rate of 0.01.
The YOLO adversarial patch (P1-P6) and Naturalistic Patch
(OBJ, OBJ-CLS, and Upper) generate multiple patches of
varying sizes and positions based on the detectable pedes-
trians in the image. We also conduct defense experiments
against two more attacks [18][19], the relevant results can
be found in the supplementary material.
Implementation details. Throughout our experiments, we
used fixed hyperparameter values for different patch types
without any adjustments. We set rmi to 0.5 in Heatmap
fusion, which assigns equal weights to Semantic Indepen-
dence Localization and Spatial Heterogeneity Localization.
The value of p in Adaptive thresholding is set to 0.8. The
IoA threshold tm for mask matching is set to 0.5.

We compare PAD with four state-of-the-art adversarial
patch defenses: LGS [33], SAC [28], Jedi [42], and Ob-
jectSeeker [50], corresponding to denoising-based, external
segmenter-based, entropy-based and certifiably robust de-
fenses respectively. For LGS, we set the block size to 30,
overlap to 5, threshold to 0.1, and smoothing factor to 2.3.
For Jedi, due to the reliance on the prior entropy distribu-
tion values of the clean dataset and the patch region, using
default parameters in code is less effective, we perform pa-
rameter tuning for some patches.

5.2. Overall Defense Performance

In object detection tasks, Average Precision (AP) is a
widely used evaluation metric that assesses the area under
the Precision-Recall Curve, representing the overall perfor-
mance of a model. Therefore, we utilize mean Average
Precision (mAP) at Intersection over Union (IoU) 0.5 to
demonstrate the effectiveness of the attacks and defenses.
We conduct experiments on different detectors, attacks, and
defenses mentioned above and report the results in Table 1.
Due to space limitations, it only shows results on Faster R-
CNN, YOLOv3, and YOLOv5s. Results on YOLOv2 and
YOLOv8n can be found in the supplementary material.

The results demonstrate that PAD achieves the best de-
fense performance against various adversarial patch attacks
on different detectors. For natural-looking patches (P1-P6)



Table 1. mAP(%) under different adversarial patch attacks. The best performance is bolded, and the suboptimal performance is underlined.

Detector Defense Clean Localized Noise [29] Printable Patch [43] Natural-looking Patch [17]
DPatch
75×75

DPatch
100×100

OBJ OBJ-CLS Upper P1 P2 P3 P4 P5 P6

Faster
R-CNN

Undefended 96.13 52.52 3.84 50.37 67.40 49.99 60.70 74.30 62.80 73.52 72.23 47.66
LGS (WACV19) [33] 96.01 95.96 96.06 75.34 80.10 79.57 61.34 73.69 75.06 79.60 74.03 58.66
SAC (CVPR22) [28] 96.13 96.23 96.16 80.70 86.20 81.05 62.60 74.00 62.80 78.74 72.41 48.00
Jedi (CVPR23) [42] 95.97 94.15 94.20 61.40 73.10 54.45 60.70 75.80 64.30 70.15 68.22 66.12

ObjectSeeker (SP23) [50] 95.96 52.03 4.61 49.67 64.32 48.47 57.04 66.94 53.05 71.32 66.32 38.53
PAD (Ours) 96.11 96.36 96.26 84.55 87.80 88.95 68.40 87.81 85.00 87.56 89.21 83.23

YOLOv3

Undefended 96.42 66.93 64.04 44.07 78.80 62.92 51.48 42.36 64.93 78.67 64.73 66.70
LGS (WACV19) [33] 96.03 96.23 95.35 60.18 84.63 83.67 69.27 74.18 68.42 78.76 63.10 73.58
SAC (CVPR22) [28] 96.08 96.52 95.95 79.39 83.46 78.96 56.01 72.93 64.80 84.20 66.31 67.42
Jedi (CVPR23) [42] 96.60 93.64 94.78 74.18 59.76 48.63 52.17 75.79 69.28 69.23 62.09 71.69

ObjectSeeker (SP23) [50] 95.82 70.78 71.17 42.31 73.27 56.18 53.78 49.59 29.28 66.34 47.63 43.89
PAD (Ours) 96.08 96.63 96.51 85.84 91.06 88.56 78.00 87.38 87.46 89.13 87.76 86.13

YOLOv5s

Undefended 95.72 51.07 37.78 28.47 45.22 41.45 35.96 29.67 38.35 38.30 29.69 36.58
LGS (WACV19) [33] 96.04 91.56 91.37 18.19 60.86 67.61 37.87 30.32 41.40 61.49 39.61 48.49
SAC (CVPR22) [28] 95.72 92.33 92.06 74.21 77.87 78.24 40.25 29.77 38.46 59.03 31.03 37.43
Jedi (CVPR23) [42] 96.69 87.70 90.65 42.96 46.88 48.79 38.10 51.59 54.11 52.22 44.96 58.84

ObjectSeeker (SP23) [50] 91.61 50.91 38.17 35.03 39.09 43.45 37.54 37.49 38.38 48.78 35.81 33.51
PAD (Ours) 96.17 93.97 93.03 84.01 83.62 84.54 42.01 58.38 69.87 78.97 67.31 61.08

[17], which are more challenging to detect by both humans
and machines, the mAP increases by more than 10% on av-
erage (absolute) compared to the suboptimal method.

From the experimental results, it can be observed that
ObjectSeeker [50] performs poorly under these attacks,
some even worse than undefended. This is because Ob-
jectSeeker can only defend against hiding attacks, and
the assumption does not hold when encountering multiple
patches. SAC [28] is best at defending against localized
noise patches since its segmenter is trained on noise-like
patch data. However, its performance significantly drops
when facing natural-looking patches, with almost no de-
fense capabilities against some of the patches. The perfor-
mance of Jedi [42] is unstable, due to the influence of non-
patch high-entropy regions. In contrast, PAD demonstrates
robustness against various patches, benefiting from the uni-
versality of semantic independence and spatial heterogene-
ity and the complete independence from prior knowledge of
attacks.

We also report the mAP of clean samples after defense in
Table 1. PAD achieves a similarly high clean performance as
the vanilla object detectors (0.02% drop on Faster R-CNN,
0.34% drop on YOLOv3, and 0.45% rise on YOLOv5s). For
clean images without patches, although areas with relatively
high values may remain after heat map threshold processing,
they are usually scattered and will be eroded during subse-
quent morphological operations, thus not significantly im-
pacting the model’s performance.

5.3. Patch Localization Performance

Patch localization is a crucial step in the defense process,
as it forms the foundation for subsequent patch removal.
Therefore, we conducted a further evaluation of the patch
localization performance. For accurate quantification, we
propose a new metric called Patch Localization Recall. For
each ground truth mask Mpatch corresponding to an intro-

Table 2. Patch Localization Recall(%) on Faster R-CNN.

Attack
Defense

SAC [28] Jedi [42] PAD

Localized
Noise [29]

DPatch-75 100.00 9.38 100.00
DPatch-100 100.00 40.63 100.00

Printable
[43]

OBJ 33.69 28.89 85.90
OBJ-CLS 38.08 34.63 86.24

Upper 35.68 33.95 64.51

Natural-
looking

[17]

P1 1.33 27.30 31.16
P2 0.00 33.16 66.97
P3 0.93 35.68 70.43
P4 29.69 34.75 81.49
P5 0.67 34.62 74.57
P6 0.93 33.16 70.84

duced patch region, we calculate the IoA between Mpatch

and the generated masks Mdefense obtained by the defense
method, and mark this patch using the following notation:

Fm =

{
1 IoA(Mpatch,Mdefense) ≥ 0.5

0 IoA(Mpatch,Mdefense) < 0.5
(13)

Recallpatch =

∑M
m=1 Fm

M
. (14)

Since there is no patch localization process in certifiably
robust defense, and the localization results of LGS [33] are
not continuous regions, we primarily compare PAD with
SAC [28] and Jedi [42]. The results are presented in Ta-
ble 2, showing a significant improvement ( 30%-55% abso-
lute and 2-3x relative) over existing state-of-the-art works.
In the case of YOLO adversarial patch [43] and Naturalistic
Patch [17], the ground truth masks include small regions that
can be easily mistaken for the background. This is because
the attack involves covering almost every visible pedestrian
in the image with a patch, including small individuals in the
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Figure 3. Visualization examples illustrating the patch localization process of PAD across different adversarial patch types.

distance. As a result, achieving high Patch Localization Re-
call values becomes more challenging. However, PAD still
demonstrates effective performance against these attacks.

SAC [28] exhibits good performance for DPatch [29],
as its segmenter is trained on adversarial images generated
with PGD [31], which falls under the category of local-
ized noise. However, it struggles when faced with natural-
looking patches that it has not encountered before, leading
to almost zero Patch Localization Recall. Jedi [42] performs
poorly on DPatch-75, which may caused by the difficulty in
the prior entropy distribution values adjustment. In contrast,
PAD achieves high Patch Localization Recall for different
types of patches, as it does not rely on prior knowledge or
existing attack data.

According to the definition of Patch Localization Recall,
It is natural to think that a defense method can achieve a high
Patch Localization Recall by generating a mask with the
widest possible coverage. However, removing a large num-
ber of non-patch areas from the image will inevitably result
in a decrease in detection mAP. PAD achieves the highest
values in both Patch Localization Recall and detection mAP,
showcasing superior defense performance. We provide vi-
sualization of the patch localization process in Figure 3.

5.4. Ablation Study

To investigate the individual impacts of semantic in-
dependence and spatial heterogeneity in PAD, we con-
duct an ablation study that involves using only the Hmi

from Semantic Independence Localization and only the Hcd

from Spatial Heterogeneity Localization. Partial results on
YOLOv8n are presented in Table 3. It can be observed that
the full method, which combines semantic independence
and spatial heterogeneity, achieves more stable overall per-
formance.

Additionally, we have observed that spatial heterogeneity

Table 3. mAP (%) of ablated defenses on YOLOv8n.

Defense
Attack

OBJ Upper P3 P4 P5

LGS 47.5 82.0 53.1 79.4 62.4
SAC 81.9 58.1 51.8 78.2 53.5
Jedi 57.6 84.6 66.9 65.9 64.2
PAD-MI only 78.6 86.7 76.3 77.4 74.0
PAD-CD only 86.3 89.8 76.1 85.4 82.2
PAD-all 87.5 88.9 78.7 85.4 81.5

tends to outperform semantic independence in digital attack
experiments. In digital attacks, patch generation is com-
pletely independent of the original clean image and less af-
fected by interference, resulting in more pronounced hetero-
geneity, leading to better performance. However, in physi-
cal attacks where the patch is physically printed and imaged
alongside other parts of the scene, the manifestation of het-
erogeneity may become weaker, and the role of semantic
independence becomes more significant. In such cases, se-
mantic independence outperforms spatial heterogeneity.

In this paper, to validate the defense performance of PAD
without any parameter tuning, equal weights are assigned
to Semantic Independence Localization and Spatial Hetero-
geneity Localization. By adjusting the weight allocation for
digital attacks and physical attacks respectively, PAD can
achieve even better results.

6. Defense Evaluation on Physical Attacks

To validate the effectiveness of PAD against physical at-
tacks, we conducted experiments using a publicly available
dataset that consists of physical adversarial patches [5], as
well as physical attack videos captured by our own. We kept
all parameters unchanged, ensuring that the implementation
details remained consistent with the digital experiments.



Figure 4. ASR (%) after defenses, lower values indicate better
defense performance. Results with * are from [28].

PAD (Ours)SAC JediUndefended

Figure 5. Comparison of defended images on APRICOT. Jedi [42]
fails to locate patches, the drop in ASR is caused by resizing in
Auto-Encoder. SAC [28] masks out most patch regions, but still
affects many other regions despite the training with accurate mask
annotations. PAD achieves the best removal performance.

6.1. Evaluation on APRICOT

APRICOT [5] consists of 1,011 photos with high res-
olution captured in real-world environments, encompass-
ing both indoor and outdoor scenes. Each photo contains
a printed physical adversarial patch, which varies in size,
shape, location, viewing angle, and lighting conditions.
These patches are generated to cause false detection of non-
existent objects, targeting 10 specific classes.

We use Faster R-CNN [37] model pretrained on MS
COCO [27] as our target object detector and evaluate the
defense performance on the development set. Since this is
a targeted attack, we use the Attack Success Rate (ASR) as
our evaluation metric, setting the IoU threshold to 0.10 and
the confidence threshold to 0.30. We present the results after
applying different defense methods in Figure 4.

The results show that PAD, without any prior attack
knowledge or training data of adversarial patches, signifi-
cantly reduces the attack success rate to 2.27%. Moreover,
SAC [28] utilizes APRICOT data with accurate masks to
train its patch segmenter, getting an attack success rate of
only 0.1% lower than PAD, highlighting the superiority of
PAD. We provide examples of defended images produced
by different defense methods in Figure 5, demonstrating our

(a) PR-curve of different defenses.
SAC coincides with Undefended.

(b) Original and defended image.
White circles added after prediction.

Figure 6. Defense results on our physical test set.

robustness against physical world patches of various sizes,
shapes, lighting conditions, and angles.

6.2. Evaluation on physical attack videos

To further evaluate the effectiveness of PAD against a
wider range of patch types in the physical world, we print
nine different patches, including P1-P6 [17], OBJ, OBJ-
CLS, and Upper [43], and capture videos in five different
indoor and outdoor scenes while holding these patches.

Due to the significant impact of lighting, distance, and
angles on the success rate of physical attacks, we con-
duct extensive practical filming and testing to select a sub-
set comprising images with relatively higher attack success
rates. The final defense test set consists of 1100 photos,
more details about the data distribution can be found in the
supplementary material.

We use YOLOv8n as the target object detector and com-
pare the defense performance of PAD with Jedi [42] and
SAC [28] on this test set. The PR curves in Figure 6a
demonstrate the superiority of PAD over the compared state-
of-the-art methods. We show an example of the test image
and defense result in Figure 6b.

7. Conclusion

In this paper, we identify two inherent characteristics
of adversarial patches that are independent of their appear-
ance, shape, size, location, and quantity. Leveraging these
characteristics, we propose a patch-agnostic defense (PAD)
method, which perform adversarial patch localization and
removal without prior attack knowledge. PAD offers patch-
agnostic defense against a wide range of adversarial patches,
significantly enhancing the robustness of various pre-trained
object detectors. Without training, PAD eliminates the re-
liance on existing attack data, making it more adaptable and
capable of defending against novel patch attacks that have
not been encountered yet. Our experimental results demon-
strate the effectiveness in both digital space and the physical
world, highlighting the practicality of PAD across different
attack scenarios.
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and Justin Gilmer. Adversarial patch. arXiv preprint
arXiv:1712.09665, 2017. 2

[7] Niklas Bunzel, Ashim Siwakoti, and Gerrit Klause. Adver-
sarial patch detection and mitigation by detecting high en-
tropy regions. In IEEE/IFIP International Conference on De-
pendable Systems and Networks Workshops, pages 124–128,
2023. 1, 2, 3

[8] Shang-Tse Chen, Cory Cornelius, Jason Martin, and
Duen Horng Chau. Shapeshifter: Robust physical adversar-
ial attack on faster r-cnn object detector. In European Con-
ference on Machine Learning and Knowledge Discovery in
Databases, pages 52–68, 2019. 2

[9] Zitao Chen, Pritam Dash, and Karthik Pattabiraman. Turning
your strength against you: Detecting and mitigating robust
and universal adversarial patch attacks. arXiv e-prints, pages
arXiv–2108, 2021. 2

[10] Ping-Han Chiang, Chi-Shen Chan, and Shan-Hung Wu. Ad-
versarial pixel masking: A defense against physical attacks
for pre-trained object detectors. In ACM MM, pages 1856–
1865, 2021. 1, 2, 4

[11] Navneet Dalal and Bill Triggs. Histograms of oriented gra-
dients for human detection. In CVPR, pages 886–893, 2005.
5

[12] Hany Farid. Exposing digital forgeries from jpeg ghosts.
IEEE TIFS, 4(1):154–160, 2009. 4

[13] Thomas Gittings, Steve Schneider, and John Collomosse.
Vax-a-net: Training-time defence against adversarial patch
attacks. In ACCV, 2020. 2

[14] Jamie Hayes. On visible adversarial perturbations & digital
watermarking. In CVPRW, pages 1597–1604, 2018. 2

[15] Junfeng He, Zhouchen Lin, Lifeng Wang, and Xiaoou Tang.
Detecting doctored jpeg images via dct coefficient analysis.
In ECCV, pages 423–435, 2006. 4

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 5

[17] Yu-Chih-Tuan Hu, Bo-Han Kung, Daniel Stanley Tan, Jun-
Cheng Chen, Kai-Lung Hua, and Wen-Huang Cheng. Nat-
uralistic physical adversarial patch for object detectors. In
ICCV, pages 7848–7857, 2021. 2, 5, 6, 8

[18] Zhanhao Hu et al. Adversarial texture for fooling person de-
tectors in the physical world. In CVPR, 2022. 5

[19] Hao Huang et al. T-sea: Transfer-based self-ensemble attack
on object detection. In CVPR, 2023. 5

[20] Daniel Jakubovitz and Raja Giryes. Improving dnn robust-
ness to adversarial attacks using jacobian regularization. In
ECCV, pages 514–529, 2018. 2

[21] Nan Ji, YanFei Feng, Haidong Xie, Xueshuang Xiang, and
Naijin Liu. Adversarial yolo: Defense human detection
patch attacks via detecting adversarial patches. arXiv preprint
arXiv:2103.08860, 2021. 1, 2

[22] Danny Karmon, Daniel Zoran, and Yoav Goldberg. Lavan:
Localized and visible adversarial noise. In ICML, pages
2507–2515, 2018. 2

[23] Taeheon Kim, Youngjoon Yu, and Yong Man Ro. Defending
physical adversarial attack on object detection via adversarial
patch-feature energy. In ACM MM, pages 1905–1913, 2022.
1, 2, 5

[24] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In ICCV, pages 4015–4026, 2023. 3

[25] Zelun Kong, Junfeng Guo, Ang Li, and Cong Liu. Physgan:
Generating physical-world-resilient adversarial examples for
autonomous driving. In CVPR, pages 14254–14263, 2020. 2

[26] Guo-Shiang Lin, Min-Kuan Chang, and You-Lin Chen. A
passive-blind forgery detection scheme based on content-
adaptive quantization table estimation. IEEE TCSVT, 21(4):
421–434, 2011. 4

[27] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014. 5, 8

[28] Jiang Liu, Alexander Levine, Chun Pong Lau, Rama Chel-
lappa, and Soheil Feizi. Segment and complete: Defending
object detectors against adversarial patch attacks with robust
patch detection. In CVPR, pages 14973–14982, 2022. 1, 2,
4, 5, 6, 7, 8

[29] Xin Liu, Huanrui Yang, Ziwei Liu, Linghao Song, Hai Li,
and Yiran Chen. Dpatch: An adversarial patch attack on ob-
ject detectors. arXiv preprint arXiv:1806.02299, 2018. 2, 5,
6, 7
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